
Lecture 6 - Introduction to Electricity
A Puzzle...

We are all familiar with visualizing an integral as the area under a curve. For example, ∫a

b
f [x] ⅆx equals the sum 

of the areas of the rectangles of width Δx shown below in limit as Δx → 0.
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Furthermore, we all know the relation 

∫b

a
f [x] ⅆx = -∫a

b
f [x] ⅆx (1)

How can you visualize ∫b

a
f [x] ⅆx and determine that it is negative?

Solution

When a < b, the integral ∫a

b
f [x] ⅆx equals

∫a

b
f [x] ⅆx = limN→∞ ∑j=0

N-1 f [a+ j Δx] Δx (2)

where Δx =
b-a

N
 in the summation is the analog of ⅆx in the integral. Thus, if we flip the integration bounds, 

∫b

a
f [x] ⅆx = limN→∞ ∑j=0

N-1 f [a+ j Δx

] Δx


(3)

where Δx

=

a-b

N
< 0. Therefore, the ⅆx in ∫b

a
f [x] ⅆx is negative (because of the bounds), so that we are integrating 

a negative amount over the region of integration, yielding a negative result. □ 

Electrodynamics
We now will change subjects completely and break into the world of electricity. But the real punch-line of this 

course will occur when we merge the concept of electricity together with special relativity to see how magnetism 

naturally emerges. Get pumped!

After this course, you will be able to:

◼ Learn to love the uses of symmetry in electrostatics problems

◼ Analyze the roles of batteries, resistors, and capacitors in circuits

◼ Distinguish whether phenomena are primarily caused by mechanical or electrical means

◼ Summarize the connection between electrical forces, special relativity, and magnetism

Coulomb Force
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The Principle of Superposition states that the interaction between any two charges is completely unaffected by the 

presence of other charges. 

Consider two point charges q1 and q2 separated by a direction vector r12 from charge 2 to charge 1. In other words, 

if q1 lies at (x1, y1, z1) and q2 lies at (x2, y2, z2) then r12 = 〈x1 - x2, y1 - y2, z1 - z2〉.

Out[ ]=

⇀

The Coulomb force from charge 2 onto charge 1 equals

F12 ≡
k q1 q2

r12
2 r


12 (4)

where r12 =
r


12

r


12
, r12 = r


12, and the Coulomb constant k equals

k ≡
1

4 π ϵ0
≡ 9× 109 N·m2

C2 (5)

Complementary Section: Work

Let us calculate the energy required to bring in two charges from infinitely far away to a distance r12. Fix the 

charge q1 at the origin and let q2 come radially in from ∞. The force that we have to apply on the system when the 

two charges are a distance r away equals Fapplied = -k
q1 q2

r2 r
. Therefore, the total work equals

W = ∫ (applied force) · (displacement vector)

= ∫∞

r12-
k q1 q2

r2  ⅆr

=
k q1 q2

r12

(6)

In case you are confused by the bounds on the second integral, notice that we are taking the line integral along the 

path l

= r r

 from r =∞ to r = r12. Therefore, the displacement vector is given by ⅆ l

= ⅆ r r

 so that 

(applied force) · (displacement vector) = -
k q1 q2

r2 r

 · (ⅆ r r


) = -

k q1 q2

r2 ⅆ r. Had we wanted to find the work necessary 

to start the charges a distance r12 apart and take them out to ∞, it would have equaled W

= ∫r12

∞
-

k q1 q2

r2  ⅆ r = -W.

We can visualize in our mind by noting that - k q1 q2

r2  is the force that we apply (the negative sign comes the fact 

that it points radially inward) and this is multiplied by the negative quantity ⅆ r (negative because the integral 

ranges from ∞ to r12, so an infinitesimal step points radially inward, which is negative (this is the reason why 

∫a

b
f [x] ⅆx = -∫b

a
f [x] ⅆx)).

If we now bring in another charge q3 and move it to a point P3 that is r13 from charge 1 and r23 from charge 2, the 

work required equals

W3 = -∫∞

P3F3 · ⅆs


= -∫∞

P3F31 + F32 · ⅆs


= -∫∞

P3F31 · ⅆs

- ∫∞

P3F32 · ⅆs


(7)

That is, the work required to bring q3 to P3 is the sum of the work needed when q1 is present alone and that needed 

when q2 is present alone

W3 =
k q1 q3

r13
+

k q2 q3

r23
(8)
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Therefore, the total work U to assemble the three charges equals

U =
k q1 q2

r12
+

k q1 q3

r13
+

k q2 q3

r23
(9)

which is the sum of pairwise potential energies of the particles.

Problems

Balancing the Weight

Example

On the utterly unrealistic assumption that there are no other charged particles in the vicinity, at what distance 

below a proton would the upward force on an electron equal the electron’s weight? The mass of an electron is 

about 9×10-31 kg.

Solution

The proton and electron have charges e = 1.6×10-19 C and -e, respectively. Assume the electron and proton are 

separated by a distance d. Then the electron feels an attractive force k e2

d2  up towards the proton, and an attractive 

force m g down towards the Earth. Recalling that k = 9×109 N·m2

C2  and g = 9.8 m

s2 , these two forces are equal when 

k e2

d2 = m g which yields d ≈ 5 meters.

So the electric force of a single proton balances the gravitational force of the entire mass of the Earth at 5 meters 

away (and is much stronger at closer distances). To give a sense of how ridiculously strong this is, consider the 

same problem if we neutralized the charges on the electron and proton, and asked how small d must be so that the 

gravitational force of the neutralized proton balances that of the electron. Using the exact form of the gravitational 

force for simplicity (with E subscript denoting the Earth and p subscript denoting the neutralized proton), 
G ME m

RE
2 =

G mp m

d2  which yields d = RE
mp

mE


1/2

≈ 6.4×106 m 
1.7×10-27 kg

6×1024 kg

1/2

≈ 10-19 m, a much smaller distance than 

we can measure with the best microscopes. This is why people often say that the gravitational force is much 

weaker then the electrostatic force. □ 

Zero Force from a Triangle

Example

Two positive ions and one negative ion are fixed at the vertices of an equilateral triangle. Where can a fourth ion 

be placed in the plane of the triangle along the symmetry axis so that the force on it will be zero? Is there more 

than one such place?
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-e

+e +e

Solution

First, note that the desired point cannot be located in the interior of the triangle, because the components of the 

fields along the symmetry axis would all point in the same direction (toward the negative ion). Let the sides of the 

triangle be 2 units long. Consider a point P that lies a distance y (so y is defined to be a positive number) beyond 

the side containing the two positive ions, as shown below. P is a distance y + 3  from the negative ion, and 

1 + y2
1/2 from each of the positive ions. 

Out[ ]=

If the electric field equals zero at P, then the upward field due to the negative ion must cancel the downward field 

due to the two positive ions. This gives 
k e2

y+ 3 
2 = 2 k e2

1+y2
y

1+y2
1/2 (10)

where y

1+y2
1/2  arises from taking the vertical component of the tilted field lines due to the positive ions. This 

equation can be simplified to
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y =
1+y2

3/2

2 y+ 3 
2 (11)

which can be solved numerically as y = 0.146

NSolvey ⩵
1 + y2

32

2 y + 3 
2
, y, Reals

{{y → 0.14629}}

A second point with zero force lies somewhere beyond the negative ion. To locate it, let y now be the distance (so 

y is still a positive quantity) from the same origin as before (the midpoint of the side connecting the two positive 

ions). We obtain the same equation as above, except that + 3  is replaced with - 3 . The numerical solution is 

now y = 6.204, which corresponds to the distance that the negative ion should be placed above the triangle vertex 

with the negative ion.

NSolvey ⩵
1 + y2

32

2 y - 3 
2
, y > 3. , y, Reals

{{y → 6.20448}}

The existence of each of these points with zero field follows from a continuity argument. For the upper point: the 

electric field just above the negative ion points downward. But the field at a large distance above the setup points 

upward, because the triangle looks effectively like a point charge with net charge +e from afar. Therefore, by 

continuity there must be an intermediate point where the field makes the transition from pointing downward to 

pointing upward. So the force must be zero at this point. A similar continuity argument holds for the lower point.

Finally, we discuss how this problem is scale invariant, and hence why we did not need to specify the side length 

of the triangle. Denote the origin as the centroid of the triangle and label the three triangle charges starting from 

the electron and moving clockwise as 1, 2, and 3. Suppose a negative charge placed the point r4 = (0, y) had zero 

net force 

F =
k q4 q1

r41
2 r


41 +

k q4 q2

r42
2 r


42 +

k q4 q3

r43
2 r


43 (12)

Now if the triangle is scaled up to be α times larger (i.e. if all of the triangle's vertices were shifted from r j → α r


j), 

then a negative charge placed at (0, α y) would feel zero net force because the three r4 j directions in Equation (12) 

would not have changed but the denominators in Equation (12) would all be 1
α2  times as large (and 1

α2 ·0 = 0). 

Therefore, the side length of the triangle sets the scale for the problem, so our answer can be thought of as finding 

the two points of zero net force in this unit system. □ 

Charges on a Circular Track 

Example

Suppose three positively charged particles are constrained to move on a fixed circular track. If the charges were all 

equal, an equilibrium arrangement would obviously be a symmetrical one with the particles spaced 120° apart 

around the circle. Suppose that two of the charges are equal and the equilibrium arrangement is such that these two 

charges are 90° apart rather than 120°. What is the relative magnitude of the third charge?

Solution

Method 1: We can solve for θ by noting that the tangential force on either charge q must be zero.

Lecture 6 - 01-28-2019.nb     5

Printed by Wolfram Mathematica Student Edition



Out[ ]= θ
θ

θ

θ

2θ

4θ

q

q

Q

R

The tangential force on one of the q’s due to Q equals
k Q q

(2 R Cos[θ])2
Sin[θ] (13)

while the tangential force from the other q equals
k q2

(2 R Sin[2 θ])2
Cos[2 θ] (14)

Setting these two forces equal yields the result

Q = q
Cos[θ]2 Cos[2 θ]

Sin[θ] Sin[2 θ]2
= q

Cos[2 θ]

4 Sin[θ]3 (15)

For the particular case of θ = π

8
 given in the problem, Q = 3.154 q

Method 2: Define the angle between the two charges q to be 4 θ (the reason to make it 4 θ will be apparent in the 

solution of Method 2 below). We can compute the potential energy of this more general system, then compute its 

minimum, and find Q such that this minimum occurs at 4 θ =
π

2
.

Out[ ]= 2θ

2θ

q

q

Q

R

The potential energy of this system equals the sum U = ∑q≠k
k qj qk

rjk

 over all pairs, which equals

U =
k q2

2 R Sin[2 θ]
+

2 k q Q

R (1+Cos[2 θ])2+Sin[θ]21/2 (16)

The procedure is now straightforward (although algebraically messy). By symmetry, the system must take the 

above consideration; its only degree of freedom will be choosing the value of θ. Therefore, the system will be in 

equilibrium when the energy is minimized with respect to θ.

Taking the derivative (and simplifying) 
ⅆU

ⅆθ
=

1
R

-
q

Tan[2 θ] Sin[2 θ]
+

Q Tan[θ]
Cos[θ]

 (17)

Setting this equal to zero (and simplifying) yields the same answer found above,

Q = q
Cos[θ]

Tan[2 θ] Tan[θ] Sin[2 θ]
= q

Cos[2 θ]

4 Sin[θ]3 (18)
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The following confirms the answer using Mathematica 

res = First@FullSimplifySolveD
q

2 R Sin[2 θ]

+2
Q

R (1+Cos[2 θ])2 +Sin[2 θ]2

, θ ⩵ 0, Q, 0 < θ < π/2

res /. θ → π/8.

Q →

1

4
q Cos[2 θ] Csc[θ]3

{Q → 3.15432 q}

Let’s check some interesting limits: 

1. When the three charges are equally spaced (θ = 30 °) then Q = q, as expected.

2. If the q’s are diametrically opposite (θ = 45 °) then Q = 0, as expected.

3. If θ → 0, then Q ≈
q

4 θ3 . Two of these powers of θ come from the 1
r2  in Coulomb’s law from the q’s mutual 

repulsion, and one comes from the act of taking the tangential component of Q’s electric force. □ 

Integration

The Mathematics of 1D Integration

From this point on, we will begin to consider spherical configurations of charge distributions. As preparation for 

some of the difficult integration that we are going to perform in this class, let’s do two simple exercises. These 

problems (as well as 2D and 3D integration) are done in the Math Bootcamp: Volume Elements posted on my 

website!

◼ Prove that the length of the horizontal line between (x, y) and (x + a, y) equals a

Breaking this horizontal line into small chunks of length ⅆx, the total length of this horizontal line equals 

∫x

x+a
ⅆx = (x+ a) - x = a (19)

◼ Prove that the perimeter of a circle of radius R is 2 π R

In polar coordinates, the arc of a circle between θ and θ + ⅆθ has length R ⅆθ. Since the circle spans θ ∈ [0, 2 π], 

the perimeter of the circle equals

∫0
2 π

R ⅆθ = 2 π R (20)

Force from a Semicircle

Example

A thin rod bent into a semicircle of radius R has a charge Q distributed uniformly over its length. What is the 

electric force on a charge q at the center of the semicircle?

Solution

We use polar coordinates and align the semicircle to span θ ∈ [0, π]. The charge density of the semicircle equals 

λ =
Q

π R
 and a small portion of the semicircle between θ and θ + ⅆθ has charge λ R ⅆθ. Therefore, a charge q at the 

center would feel a force ⅆFθ =
k q (λ R ⅆθ)

R2  at the center. 
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ⅆEθ

By the symmetry of the semicircle, the total force on charge q must point in the -y direction (indeed, the x-

component of the ⅆFθ shown in the figure above is canceled by that of the ⅆFπ-θ component). The magnitude of 

the y-component equals ⅆFθ Sin[θ]. Therefore, the total force on charge q equals F = (-y

) ∫ ⅆFθ Sin[θ] which 

implies

F = (-y

) ∫0

π k q λ R ⅆθ

R2 Sin[θ] = -
2 k q λ

R
y

= -

2 k q Q

π R2 y


(21)

The electric field at the center of the semicircle equals this force divided by the charge q,

E = -
2 k Q

π R2 y


(22)

The Mathematics of 2D Integration

Let’s step it up a notch and consider 2D integrals.

◼ Prove that the area of the rectangle between (x, y), (x + a, y), (x, y + b), and (x + a, y + b) equals a b

The area element in 2D Cartesian coordinates is ⅆx ⅆy, and hence the total area equals

∫y

y+b
∫x

x+a
ⅆx ⅆy = a b (23)

◼ Prove that the area of a circle of radius R is π R2

The area element in 2D polar coordinates is r ⅆ r ⅆθ, and hence the area of the circle equals

∫0
2 π

∫0
R
r ⅆr ⅆθ = ∫0

2 π 1
2

R2 ⅆθ = π R2 (24)

Force from a Disk

Example

A circular sheet of radius R has a charge Q distributed uniformly over its area. The sheet lies in the x-z plane as 

shown below. What is the electric force on a charge q placed at a point (0, y, 0) along the axis of symmetry?
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Solution

Define the surface charge density σ =
Q

π R2 . In addition, define the polar coordinates (r, θ) where r represents the 

distance from the origin and θ represents the angle above the x-axis. By symmetry, the net force on q must point 

along the y-direction (the electric force from an infinitesimal element at (r, θ) added to the force from the element 

at (r, θ + π) will yield a force pointing in the y-direction). Therefore, the we only need to compute the y-component 

of the electric force from every part of the sheet and add them together. To show that there are multiple ways to 

perform such integration, we proceed with two methods.

Method 1: Integrate using the polar coordinate area element

The y-component of the force on q arising from the area element r ⅆ r ⅆθ at (r, θ) is given by k q (σ r ⅆr ⅆθ)

y2+r2

y

y2+r2
1/2  

where the last term pulls out the y-component of the force. Therefore, the total force on q equals

F = y

∫0

2 π
∫0

R k q (σ r ⅆr ⅆθ)

y2+r2
y

y2+r2
1/2

= y

∫0

2 π
-

k q σ y ⅆθ

y2+r2
1/2 

r=0

r=R

= y

∫0

2 π
k q σ-

k q σ y

y2+R2
1/2  ⅆθ

= 2 π k q σ1- y

y2+R2
1/2  y



=
2 k q Q

R2 1- y

y2+R2
1/2  y



(25)

The plot below shows the term in parenthesis for R = 1, and the result should appear rather puzzling. While it does 

drop off with larger y (as expected), the force does not go to zero at y = 0 (as it must be symmetry)!

Lecture 6 - 01-28-2019.nb     9

Printed by Wolfram Mathematica Student Edition



Out[25]=

1 2 3 4 5 y

0.2

0.4

0.6

0.8

1.0

1-
y

y2 + R2

In addition, we know that the force for negative y values must be pointed in the -y
 direction, so the net force for 

all y must look something like this

Out[29]=

-4 -2 2 4 y

-1.0

-0.5

0.5

1.0

Net Force in y
 Direction

By this point, you should be very surprised to see a discontinuity! Indeed, in the next lecture we will see that 

sheets of charge always result in a discontinuous force when you cross the sheet. For now, let’s conduct a sanity 

check by doing the integration in a slightly different manner.

Method 2: Integrate along rings

Rather than integrating over an individual area element r ⅆ r ⅆθ in polar coordinates, let’s integrate over rings (like 

the shaded area in the diagram above). Although exactly identical to Method 1, these types of tricks enable us to 

double check ourselves, and occasionally pay off with greatly simplified calculations. A ring of radius r and width 

ⅆ r has area 2 π r ⅆ r and therefore charge 2 π r σ ⅆ r. The force from such a ring must point in the y-direction by 

symmetry, and its magnitude will be k q 2 π r σ ⅆr

y2+r2

y

y2+r2
1/2  where the second term pulls out the y-component of the 

force, as we found in Method 1. Note that we have essentially carried out the θ-integral in Equation (25). The net 

force from the circular sheet will be
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F = y

∫0

R k q 2 π r σ ⅆr

y2+r2
y

y2+r2
1/2

= y

-

k q 2 π σ y

y2+r2
1/2 

r=0

r=R

= y

k q 2 π σ-

k q 2 π σ y

y2+R2
1/2 

=
2 k q Q

R2 1- y

y2+R2
1/2  y



as we found before. □ 

The Mathematics of 3D Integration

Finally, we reach our last level of dimensions - our three dimensional world. Everything in electricity will be 

assumed to be three dimensional, even though we will often only consider one or two dimensions when symmetry 

permits.

◼ Prove that the area of the rectangular prism between (x, y, z), (x + a, y, z), (x, y + b, z), (x, y, z + c), 
(x + a, y + b, z), (x + a, y, z + c), (x, y + b, z + c), and (x + a, y + b, z + c) equals a b c

The volume element in 3D Cartesian coordinates is ⅆx ⅆ y ⅆ z, and hence the total area equals

∫z

z+c
∫y

y+b
∫x

x+a
ⅆx ⅆy ⅆz = a b c (27)

◼ Prove that the volume of a sphere of radius R is 4
3

π R3

The volume element in 3D polar coordinates is r2 Sin[θ] ⅆ r ⅆθ ⅆϕ, and hence the volume of the sphere equals

∫0
2 π

∫0
π
∫0

R
r2 Sin[θ] ⅆr ⅆθ ⅆϕ = ∫0

π2 π 
1
3

R3 Sin[θ] ⅆθ =
4
3

π R3 (28)

With this mathematical machinery, we are all set to tackle many interesting in electrodynamics!

Advanced Section: Electric Energy vs Thermal Energy
In statistical mechanics, you will learn that the microscopic world behaves completely differently from our 

macroscopic world. For example:

◼ Proteins float: Gravity still exists, but there is a countering force that makes it negligible

◼ Nothing is stationary: All molecules are constantly wiggling around, a process known as Brownian motion

◼ Electric shielding: DNA is extremely negatively charged, and a cell is full of ions, but these ions are not drawn 
to the DNA

Here, we sketch an outline of these points. Before getting into it, suppose that you find a $10 bill on the ground. 

You will feel pretty happy, but it will just be a short burst of happiness, and you will not be overly surprised to 

have found the money. Anything less than $10 is chump change - if your friend asks you for two dollars, you will 

not hesitate to give it to them, and you will likely not hold them accountable for that money. On the other hand, 

finding a $100 is very surprising, and you will almost certainly hesitate before lending you friend this amount. In 

this setup, $10 marks the scale of a typical meaningful monetary transaction - anything smaller is irrelevant and 

anything larger is important.

In statistical mechanics, the fundamental energy scale is defined to be 1 kB T where kB = 1.38⨯10-23 kg·m2

s2·K
 and T is 

the temperature. At room temperature, 1 kB T = 4.14⨯10-21 J. As in the above example, this is the energy 

allowance that every single process in the universe has at a given temperature. Any process that takes less energy 

than this happens on a regular basis; any process that takes significantly more energy will be rare.
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With this in mind, let us think about the three effects stated above: 

◼ A protein of mass m will be expected to float up to a height h defined by m g h = kB T

◼ A mass m is expected to have an average velocity given by 1
2

m v2 = kB T

◼ A proton will not feel the effects of an electron if it is further away than a distance d defined by 
k e2

d
= kB T (29)

Substituting in the numbers yields d = 50×10-9 m = 50 nm. You should be shocked! This implies that random 

thermal fluctuations make the electric force negligible beyond 50 nanometers. This is insane, since we have just 

learned that the electric field is so much stronger than the gravitational force. But temperature has a power all of 

its own.

Mathematica Initialization
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